

HPC for the Enterprise Architect

Microsoft in Higher Education 2019

Andy Howard

HPC Software & Services anhoward@microsoft.com

Topics Today Introduction into HPC workflows

Scheduling

What are schedulers, and which are supported?

Orchestration

What exactly is orchestration and how is is different from provisioning or scheduling?

Application Install

What are the options for installing and setting up applications in an HPC environment?

Hybrid-Scenarios

What do users mean when they say hybrid? What is supported?

HPC Compute & Storage Offerings

Example Workflows

What is High Performance Computing

The coordination of many distinct computational resources (CPUs, GPUs, Memory, Storage) to solve a computational problem.

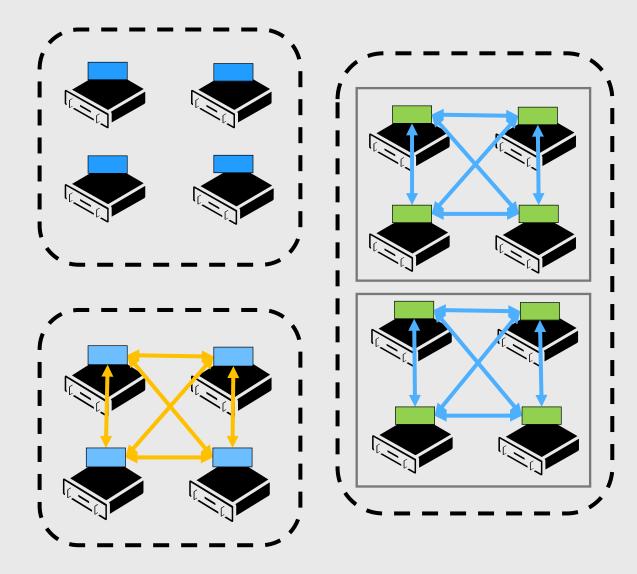
Two Types of HPC Jobs

Pleasantly parallel

Applications do not communicate

May share common store & data

May have dependencies


E.g. Monte Carlo simulations, image/video rendering, genetic algorithms, sequence matching

Tightly coupled

Applications communicate; mainly use MPI

Requires low latency, high bandwidth networking for scale

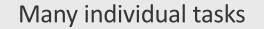
Examples: AI training, car crash simulation, fluid dynamics, climate modeling, reservoir simulation, manufacturing modeling

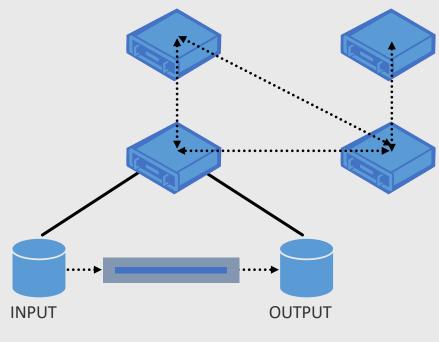
Schedulers, Orchestrators, and Workflow Managers

Scheduler

- Controls the unattended, background, program execution of jobs
- Matches jobs to available resources
- Often combined with a "Resource Manager"

Orchestrator

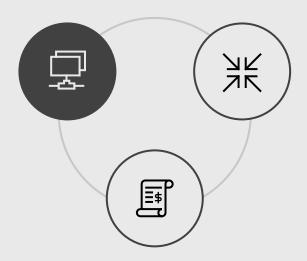

- Provisions virtual and ephemeral resources, configures them into a working system
- In the context of HPC, creates a organized cluster of worker nodes and the associated services (File Systems etc)


Workflow Manager

• Takes the set and order of tasks that a user wants to run, converts these into jobs that a scheduler understands, and uses an orchestrator to provision the necessary resources

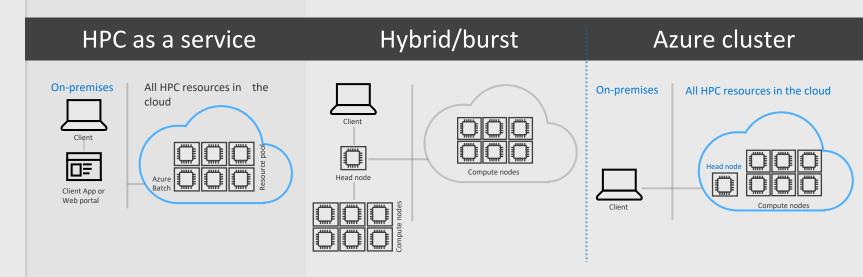
What is Job Scheduling?

Many computers/VMs


Tasks are assigned to computers/VMs

Independent or coupled tasks

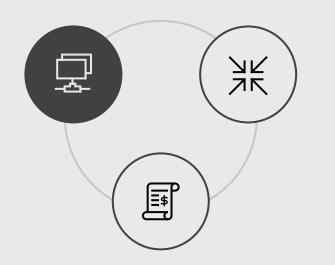
HPC Schedulers distribute tasks across computational resources


Data is read, computed and written

Does Azure provide Job Schedulers?

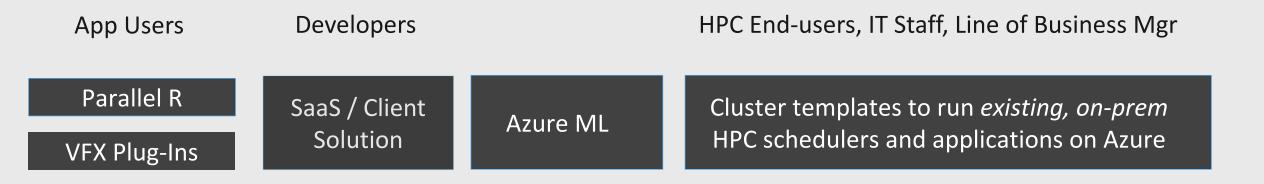
Azure Batch running jobs

Azure CycleCloud running clusters


Batch has a native scheduler

CycleCloud orchestrates traditional schedulers

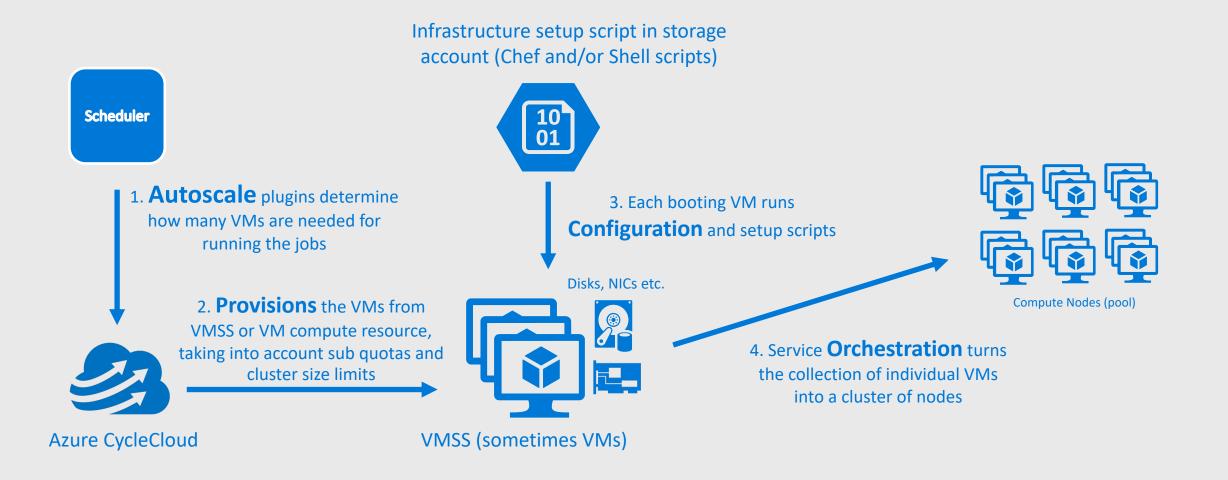
Azure CycleCloud


Scheduler Support

Provides autoscaling and orchestration for:

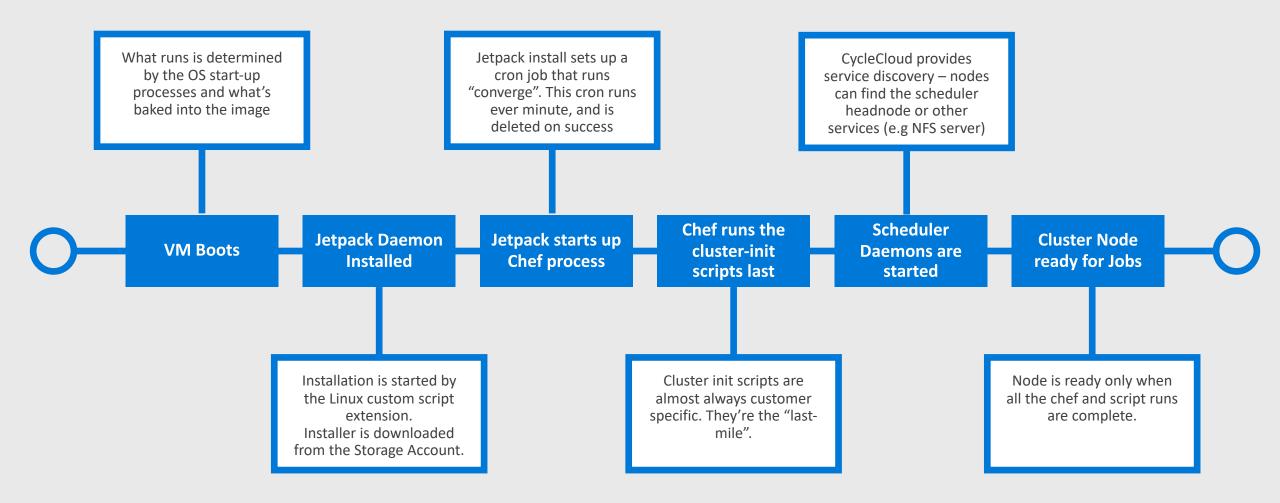
LSF PBSPro Grid Engine Slurm HTCondor

Azure HPC Platform and Services



Cloud Services, VMs, VMSS

Hardware

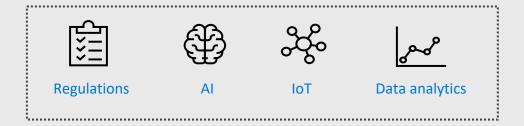

CycleCloud

Orchestration: From autoscale to cluster nodes

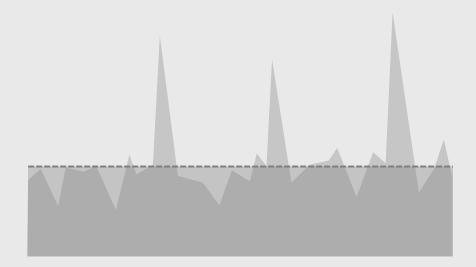
CycleCloud Node Preparation Detail

Provision -> Preparation -> Configuration -> Orchestration

Challenges with on-premises HPC



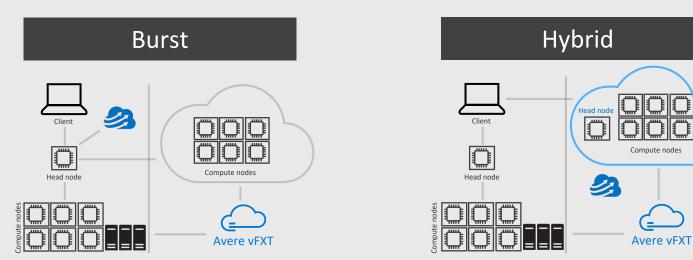
Finite resources do not scale with the business

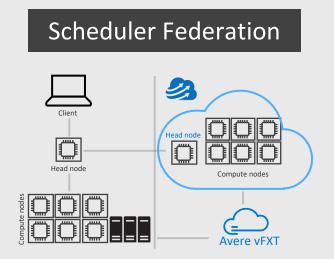


Usage spikes creates inconsistent ROI that is challenging to forecast

∠ Updating HW is time✓ consuming and expensive

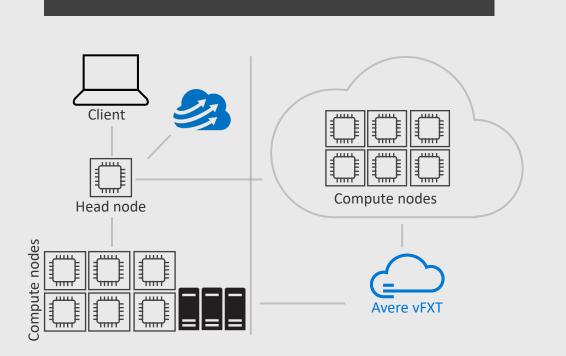
Random, unpredictable spikes in demand for HPC can come from any new or existing application workflow


Demand for HPC infrastructure

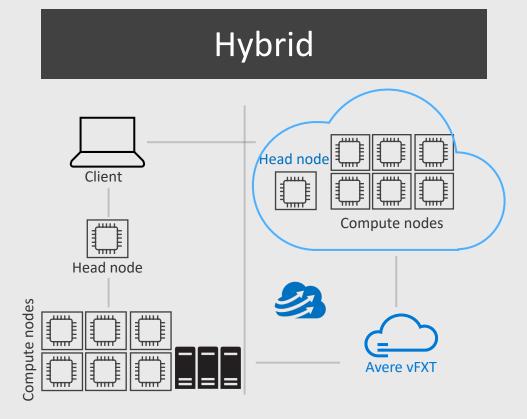


On-premises

Hybrid Architectures

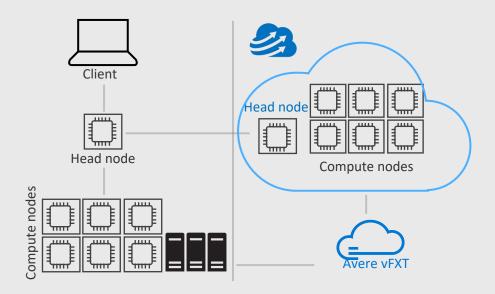

What do you mean by "Hybrid"?

Hybrid HPC Architectures: Burst


- 1. What most customers think when the say "Hybrid".
- 2. Need site-to-site VPN, subnet in Azure VNET is essentially an extension of the internal subnet.
- 3. DATA Syncing is crucial!!! JIT syncing at job run time is impractical.
- 4. Possible with almost all schedules. LSF supports this natively.
 - Other schedulers require an installation of a autoscaling plugin in the internal environment.
 - Tricky to configure with CycleCloud.

Burst

Hybrid HPC Architectures: "Hybrid"


- 1. Hybrid environment with 2 clusters
- 2. Trivial to implement! Just direct user to another IP address to submit jobs to.
 - If there's site-to-site VPN, there's no need for public internet access
- 3. DATA Syncing is crucial!!! JIT syncing at job run time is impractical.
- 4. Supported in ALL schedulers

Hybrid HPC Architectures: Scheduler Federation

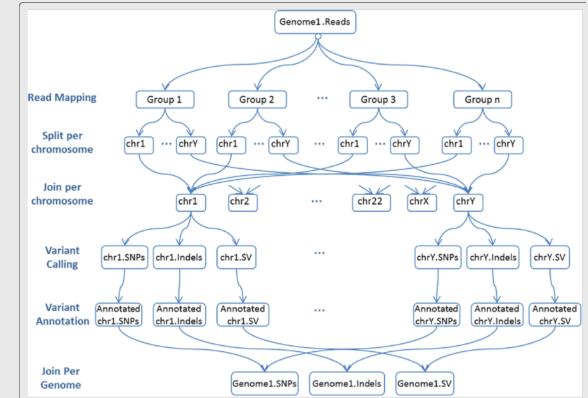
- 1. The Scheduler software natively supports federation.
- 2. Scheduler in local cluster is aware of resources and jobs across all clusters in the federation.
- 3. The clusters coordinate with the "origin" cluster (cluster the job was submitted to) to schedule the job.
- 4. Trivial to implement if the scheduler supports it. Data sync is sometimes implemented *within* the scheduler's implementation. Otherwise data syncing is required.
- 5. Supported in SLURM and HTCONDOR

Scheduler Federation

Hybrid Deployments

1. Coordinating compute resources with the scheduler is actually the easy part.

2. The practical implementation is *tedious*


- How should the customer sync data, such that inputs are in all the clusters? Do outputs get synced back to onprem too?
- Networking and firewalls are tricky to get around. InfoSec teams will need to be involved and takes a while to get everything approved.
- How is user management going to be done? It needs to be the same in the internal and external environment
- Extremely difficult to succeed in a POC.
- 3. CycleCloud's roadmap is to leave the implementation details to the schedulers, and only manage the provisioning and orchestration
 - Provide an autoscaling API for schedulers to implement
 - Autoscaling and provisioning decisions are the responsibility of the scheduler developer

Workflow Management

1. Bioinformatics compute jobs, are typically not a simple, sequential chain:

JobA -> JobB -> JobC -> Finish

- It usually looks more like a directedacyclic-graph – jobs split into multiple downstream tasks, then converge in the end.
- 3. Workflow managers help manage a processing pipeline of job dependencies, and provides portability so that the jobs can be ran across different distributed systems

Workflow Management Frameworks

Examples of Common Frameworks

• Cromwell, Snakemake, NextFlow, TES (GA4GH)

Do these frameworks work on Azure?

- Yes and No
- Ideally these frameworks work natively with Azure Batch and Blob Storage
 - This way, one can define a set of tasks and docker images, execute these via Batch and have persistent data stored in Blob.
- But aside from TES (allegedly), there's no native integration with Azure.

BUT there's another way:

- Because these frameworks are designed to be portable, they work with traditional HPC schedulers (SGE, PBS, Slurm, LSF etc)
- Start a cluster on Azure using CycleCloud, install the framework -> run job.

How to you install applications on VMs for HPC environments?

Faster provisioning time Compile and install on each VM Compile and install once on a NAS for entire env Use a package manager (local in each VM or into NAS)

Increase Flexibility

Use containers

Custom Image

Compile and Install on each VM or into NAS

How to implement this?

- Create a script and run it during the boot-up phase of each node
- For NAS, do it during the boot-up phase of the Filer, or do it manually, once on the Filer.

Pros?

• Agility – can alter the script easily for each node.

Cons?

• SLOW! Adds to the boot-up time of each VM/node

Installing it into the NAS is a really good option though.

- Need a performant read FS for large environments (like an Avere vFXT)
- Often used in conjunction with Modules in Linux systems (http://modules.sourceforge.net)

<pre>\$./configure</pre>			
\$ make			
<pre>\$ make install</pre>			
# Stage into NAS			
<pre>\$ cp my_executable</pre>			
/shared/apps/bin/			

Use a Package Manager

- Makes compiling and installing scientific applications easy removes the pain of having to manage dependences and version conflicts.
- Can be done on each VM using a script, or on a NAS
- The two common ones in HPC are Conda and Spack <u>https://conda.io</u> <u>https://spack.io</u>

Pros?

• Agility, very easy to manage

Cons?

• Can be slow but setting it up into the NAS is a really good option.

Use a Package Manager

Spack:

- \$ git clone https://github.com/spack/spack.git
- \$. spack/share/spack/setup-env.sh
- \$ spack install hdf5

Conda (Miniconda):

- \$ wget https://repo.anaconda.com/miniconda/Miniconda2-latest-Linux-x86_64.sh
- \$ bash Miniconda2-latest-Linux-x86_64.sh -b
- \$ source ~/miniconda2/etc/profile.d/conda.sh
- \$ conda install -y bowtie2 samtools bcftools htop glances nextflow

Using Containers

Containers

- Essentially running applications in complete process isolation
- Utilizes from Linux namespace and control groups primitives
- Docker and Singularity are the most common technologies
 - Singularity was started in LLNL and really designed for running multiuser, untrusted applications on HPC clusters
- Vibrant communities create and publish images (e.g Docker Hub), makes it easy to distribute and share workloads
 - Replicability and reproducibility is big here
- Azure Container Registry provides users repositories to publish and deploy container images

Using Containers

VM Image needs to have the container runtime

- You don't want to install the runtime at boot on each VM
- Use a prepared docker/singularity image

Pros?

Don't have to manage applications. Just find a container image or create one.

Cons?

• Running and managing HPC jobs that run containers isn't that trivial

Use a workflow manager that has container support

- # Docker example for bowtie2
- \$ docker pull biocontainers/bowtie2:latest

\$ docker run -u \$(id -u \${USER}):\$(id -g \${USER})
-v /shared/data:/data -itd
biocontainers/bowtie2:latest bowtie2 -x
bowtie2 index -u read1,read2

Use a custom image

How to implement this?

- Start a single VM with the desired OS. Compile and install the application(s)
- Capture the image of the VM
- Use new image in the HPC environment

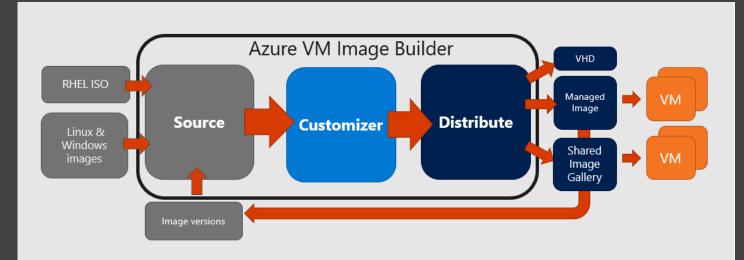
Pros?

• Fastest way to go from provision to running job. Simplest to use in a job.

Cons?

• Very inflexible. Need to build custom image for every change or version update.

- # install application and dependencies
- \$./configure
- \$ make
- \$ make install
- # Capture Image
- \$ sudo waagent -deprovision+user.
- # Capture image in Azure Portal or CLI


Use a custom image (automated)

Packer (https://packer.io)

 From Hashicorp, provides a templatized way of automating image creation.

Azure Image Builder Service

- Essentially Packer as a Service on Azure
- https://docs.microsoft.com/enus/azure/virtual-machines/linux/imagebuilder-overview

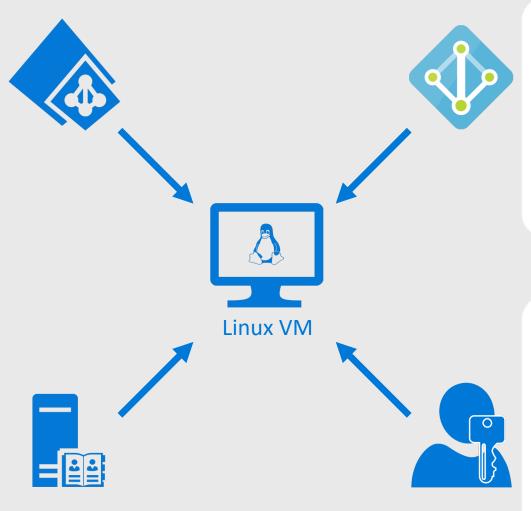
How to you install applications on VMs for HPC environments?

Faster provisioning time Compile and install on each VM Compile and install once on a NAS for entire env Use a package manager (local in each VM or into NAS)

Increase Flexibility

Use containers

Custom Image


User Management for Linux VMs on Azure

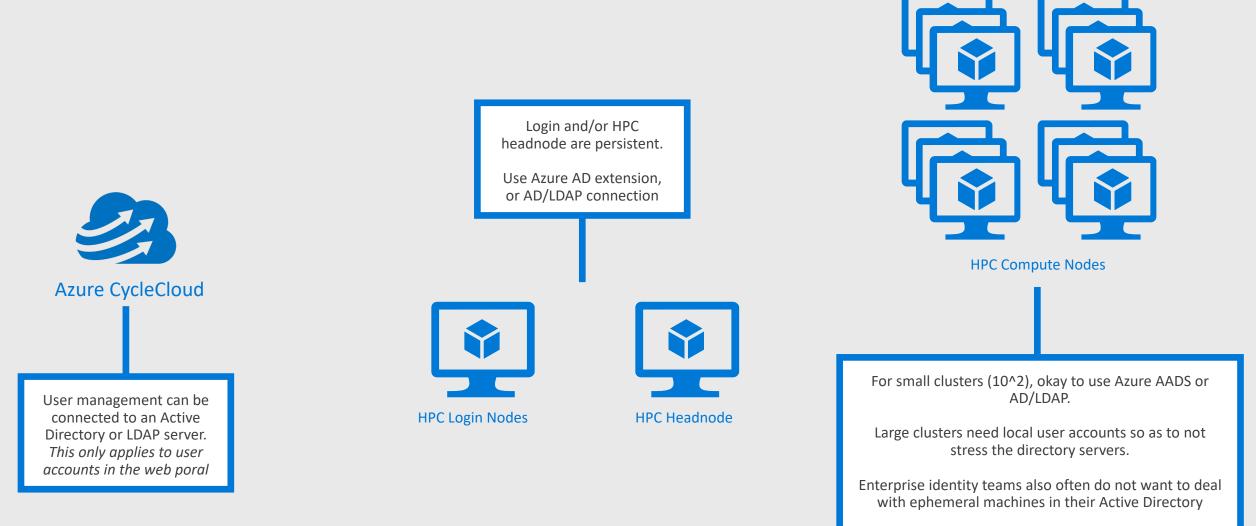
Azure Active Directory

- Integration via an VM extension.
- Essentially a PAM module that forwards the authentication request to the Azure portal.
- The interaction is similar to the az-cli login, or the Cloud Shell
- Can not be used in HPC jobs where there is no interactive login

External or Customer Managed AD/LDAP server

- For example, connecting to an onprem AD or LDAP server.
- Linux VM needs to be configured to join domain, configure PAM modules etc.
- Sometime Centrify is used.
- Create custom image from the config

Azure Active Directory Domain Service


- Essentially Active Directory Servers as a managed service
- Linux VM needs to be configured to join the AD domain, and configure the relevant modules
- Easiest path is to create a custom image from the configuration

Local User Accounts on each VM

- Managed local on each VM.
- Possible to use scripts or cloud-init to create these users.
- Azure Batch supports this
- CycleCloud 7.8.0 provides a central mechanism to do this, using accounts from the CycleCloud UI.

User Management for Linux Clusters in Practice

Probably requires a mixture of services

HPC VMs on Azure

No-compromise CPU and GPU based resources

- Up to 16 cores, Intel Xeon E5-2667 V3 processor
- Up to 224 GB DDR4 memory, 14GB per core
- FDR InfiniBand @ 56 Gbps
- 2 TB local SSD

H-Series:

Most powerful CPU virtual machines with InfiniBand

- Up to 44 cores, Intel Xeon Platinum 8168 processor
- 352 GB DDR4 memory, 8GB per core
- EDR InfiniBand @ 100 Gbps
- 700 GB local NVMe SSD

N-Series:

GPU virtual machines specialized for graphicintensive workloads

- Up to 4 NVIDIA Tesla K80 GPUs
- Up to 24 cores
- Up to 224 GiB memory
- Up to 1440 GiB of local SSD
- FDR InfiniBand

- Up to 4 NVIDIA Pascal P100 GPUs
- Up to 24 cores
- Up to 448 GiB memory
- Up to 3 TB of local SSD
- FDR InfiniBand

- Up to 4 NVIDIA Volta V100 GPUs
- Up to 24 cores
- Up to 448 GiB memory
- Up to 3 TB of local SSD
- FDR InfiniBand

- Up to 4 NVIDIA Pascal P40 GPUs
- Up to 24 cores
- Up to 448 GiB memory
- Up to 3 TB of local SSD
- FDR InfiniBand

- Up to 4 NVIDIA Tesla M60 GPUs
- Up to 24 cores
- Up to 224 GiB memory
- Up to 1440 GiB of local SSD

- Up to 4 NVIDIA Tesla M60 GPUs
- Up to 24 cores
- Up to 448 GiB memory
- Up to 2,948 GiB of local SSD

- 60 cores, AMD EPYC 7551 processor
- 240 GB DDR4 memory, 4GB per core
- EDR InfiniBand @ 100 Gbps
- 700 GB local NVMe SSD

High-Performance Computing VMs (H)

	HBv2*	НВ	НС	н
CPU	AMD EPYC	AMD EPYC Intel Xeon Platinum		Intel Xeon E5 v3
Cores/VM	120	60	44	16
Cores/cluster	80,000+	38,000+	28,000+	7,000+
Clock Speed**	2.8GHz	2.5 GHz	3.4 GHz	3.3 GHz
Memory Bandwidth	350 GB/sec	263 GB/sec	190 GB/sec	80 GB/sec
Memory	4GB/core 480 total	4 GB/core 240 total	8 GB/core 352 GB	14 GB/core 224 GB
Local Disk	1.6 TB NVMe	700 GB NVMe		2 TB SATA
Infiniband	200 Gb HDR	100 Gb EDR w/ ConnectX-5		56 Gb FDR
Network		40 Gb Ethernet		

In Preview today, Q4 2019 release

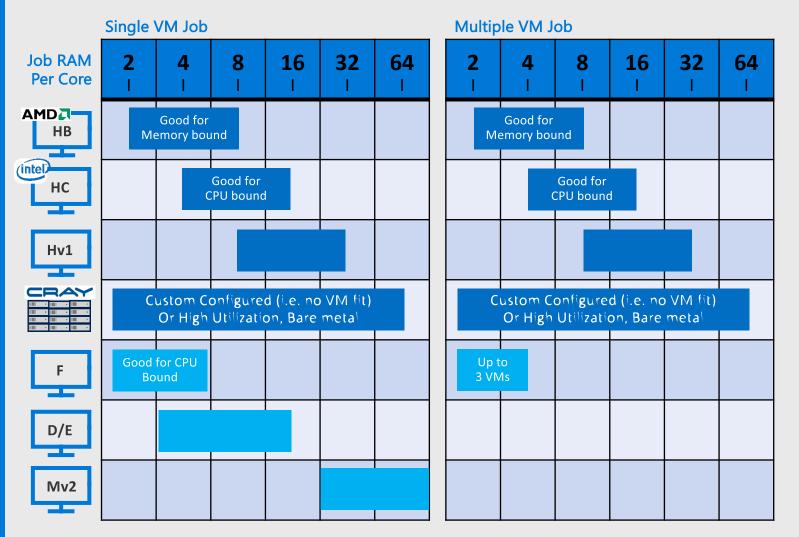
(intel

XEON

**All cores, non-AVX, peak Boost/Turbo frequencies

High-Performance Computing VMs (H) Powered by AMD EPYC and Intel Xeon Platinum

	НВ	НС	н
Targets	CFD, Seismic, Weather,	FEA, MD, Chemistry	Genomics, HPDA, Single-Threaded
Workload Driver	Memory Bandwidth	Raw Compute	Large RAM/core
Max MPI Job Size	18,000 cores	13,200 cores	3,200 cores*
MPI Support	All	All	Intel MPI 5.x
Azure Storage Support	Premium	Premium	Standard
OS Support for RDMA	CentOS/RHEL 7.5+ SLES 12 SP4+ WinServer 2016+	CentOS/RHEL 7.5+ SLES 12 SP4+ WinServer 2016+	CentOS/RHEL 6.x+ SLES 12+ WinServer 2012+



*Platform issues with H-v1 constrains MPI job scaling to ~512 cores with high efficiency

Sizing Azure VMs for the job

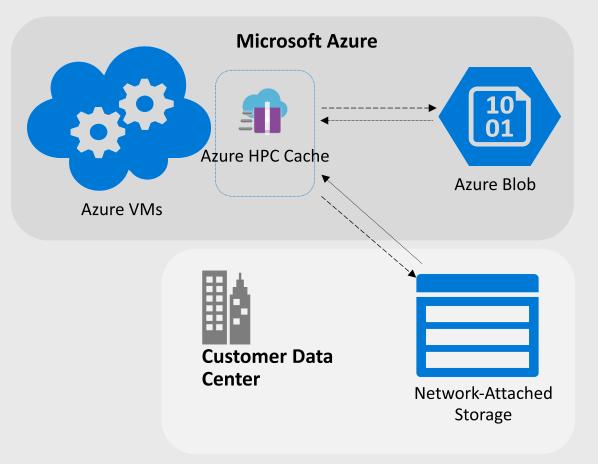
Steps to find the right VM:

- 1. Determine if 1 job for the HPC application runs on less than 1 machine or uses MPI across multiple machines
- 2. Determine the job's RAM per core usage (e.g. 6GB of RAM per core), and benchmark the instances that fit
- 3. If the workload requires Physical Cores, use the VM families in Purple
- 4. Check on availability of preferred machines
- 5. Cray is applicable for any workloads:
 - (a) Where a workable VM type isn't regionally available
 - (b) Which are high utilization, servers are used 80+%
 - (c) Where we have no working VM configuration

Physical Cores Hyper-threaded

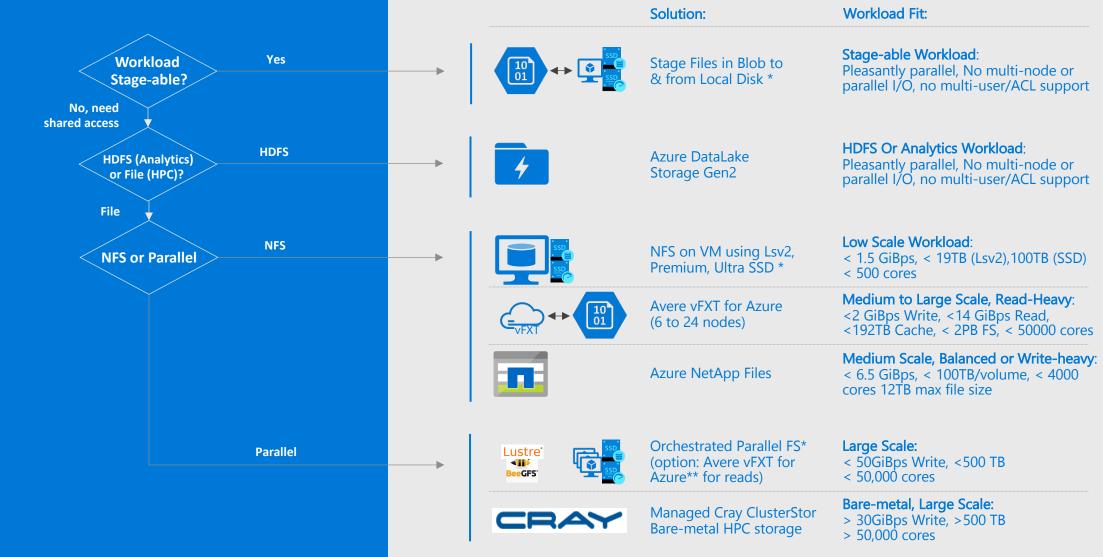
Azure Storage

Disk Storage Object		t Storage	File Storage
Premium Ultra SSD	Azure Blobs		Azure NetApp Files Cray ClusterStor Azure Premium Files
Reliable, persistent, high performing storage for Virtual Machines		able storage for stured data	Lift and shift of legacy applications that require file shares to the cloud
0 0 0 0 0 0 0 0 0			
Data Transport		Hybrid Storage	
Azure Import/Export Azure DataBox		Azure FXT Edge Filer (Preview) Avere vFXT for Azure	
Move or migrate data in Azure	to	Secure, intelligent data tiering between on-premises and cloud storage	

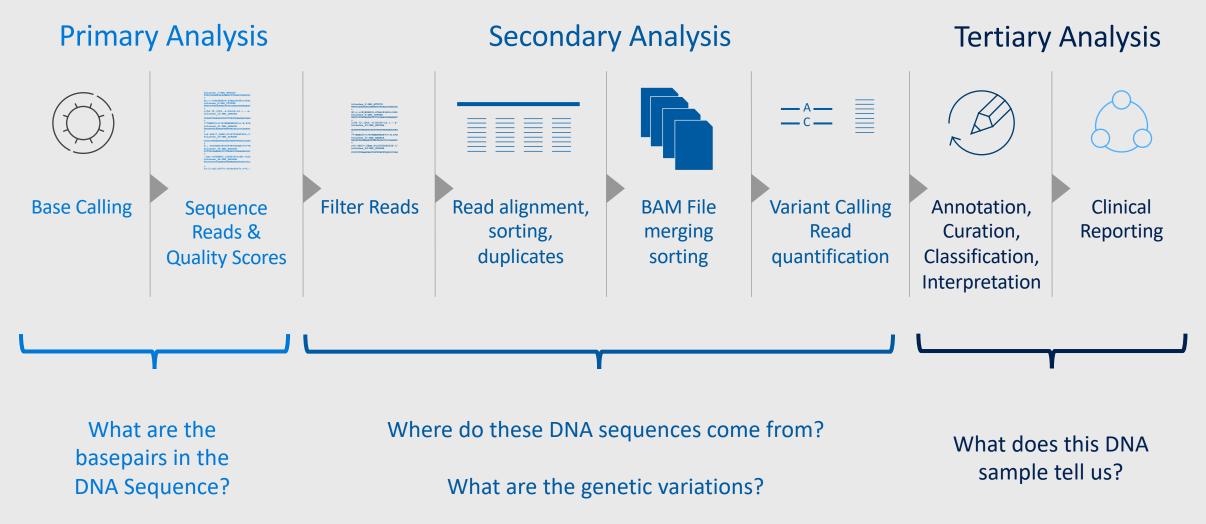

Azure HPC Cache

Storage Caching for High-Performance Computing

Better performance for computationally-intensive workloads

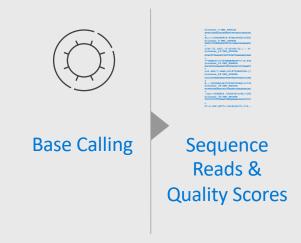

- Performance. Caching of hot data needed for demanding workloads, minimizing storage latency for heavy-read environments.
- File Access. File-based applications can access Azure compute resources from either on-premises network-attached storage (NFS) or Azure Blob (REST)
- Productivity. Easy to set-up and manage from the Azure portal.

Suitable for many verticals including media & entertainment, life sciences, EDA, manufacturing, oil & gas, financial services and government applications.

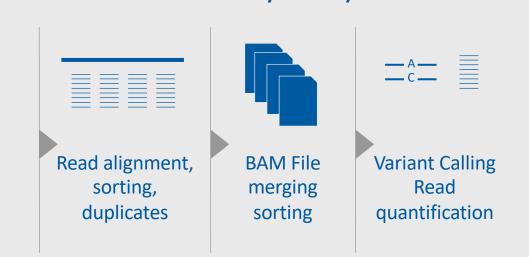

File System Triage

Start at top and work down to find a HPC File System Solution

* For scratch use Ephemeral Local Disks, for persistent use Premium Disks or Ultra SSD


Increasing Scale/Perf Needs

Primary Analysis: Architecture Considerations

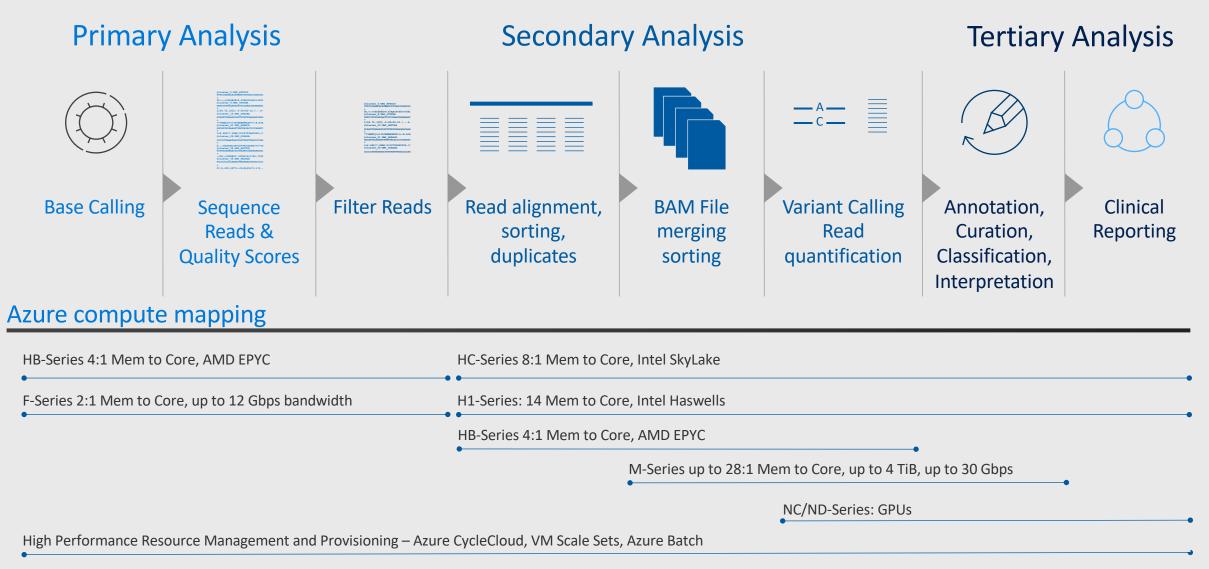

- 1. Essentially converts signal data from sequencing machines into DNA sequences (FastQs)
- 2. Many millions of small files -> IO load is very metadata intensive
- 3. In 95% of the cases, this is done on-prem, practically to the sequencing machines.
- 4. But if done on Azure:
- Cheapest \$/core ratio

Primary Analysis

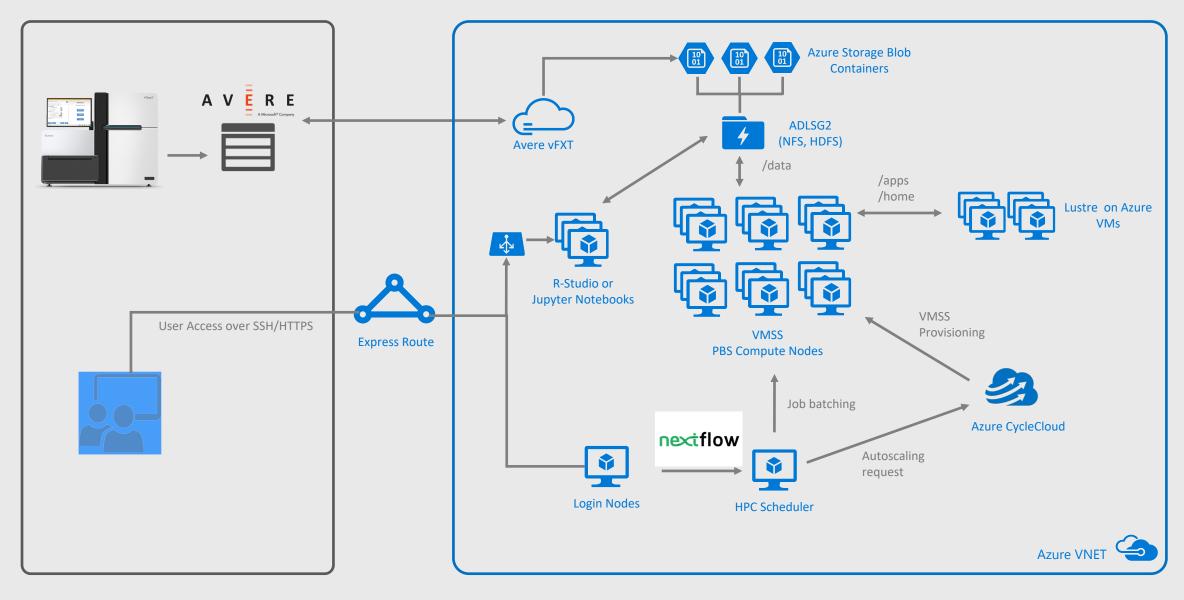
Secondary Analysis: Architecture Considerations

- 1. For every DNA sequence fragment, figure out where it lies in the genome or what gene it represents.
- 2. Processes are almost always memory bound:
 - Chose the VM SKU that provides the necessary memory/core
 - Memory/core requirement differs from application to application
- 3. IO load is directly proportional to the number of parallel tasks (or samples) being ran.
 - Each task needs to read a reference data (~4GB) into memory, stream input data, and write output in small blocks into a persistent store
 - Pick the correct storage solution based on the number of parallel tasks

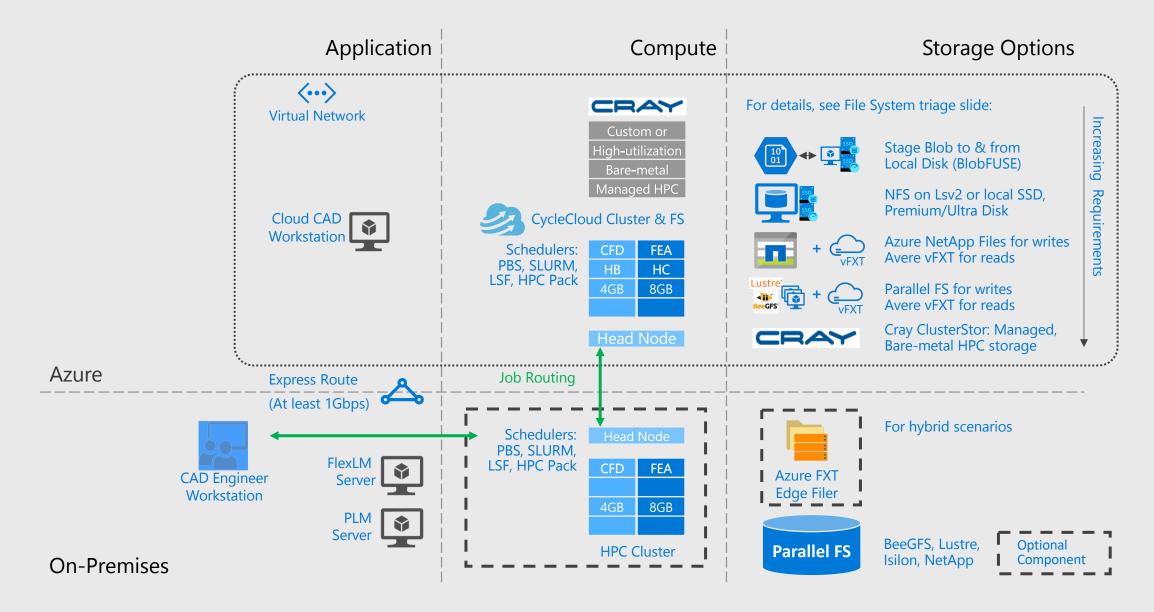



Secondary Analysis

Tertiary Analysis: Architecture Considerations


- 1. A catch-all stage for a very varied set of downstream analysis
 - Primarily data-science or machine-learning driven
- 2. Azure's platform services shine here:
 - Databricks if the customer is using Spark
 - Azure ML if the customer is doing training or inference
 - Azure Notebooks for data exploration

3. Azure Blob with ADLSgen2 for HDFS protocol is useful



Genomics Architecture – How it comes together

CFD & FEA Architecture

Additional Resources

Azure CycleCloud: <u>https://docs.microsoft.com/en-</u> us/azure/cyclecloud/quickstart-install-cyclecloud

Azure Batch: https://docs.microsoft.com/en-us/azure/batch/

Azure HPC Cache: https://azure.microsoft.com/en-us/services/hpc-cache/

HPC for the Enterprise Architect

Microsoft in Higher Education 2019

Andy Howard

HPC Software & Services anhoward@microsoft.com